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Measuring Residential Real Estate
Liquidity

Brian D. Kluger* and Norman G. Miller*

There are many factors, other than price alone, that
may affect the liquidity of real estate. This study
develops a liquidity measure based on the Cox propor-
tional hazard technique, a statistical model widely used
in the epidemiologic and social sciences. The odds
ratio, along with an estimate of market value for a
home, are used to construct a liquidity measure. This
measure can extract from the data a rich statistical
profile of the variables that affect liquidity.

INTRODUCTION

Wood and Wood [22] define liquidity as "the inverse of the
amount of time that elapses between the decision to sell a
security and the receipt of the full market value by the seller." In
this paper we construct a measure of housing liquidity related to
this definition, but instead of examining the expected time on the
market, our measure is based on the relative odds ratio. This
ratio can be interpreted as the relative probability of sale for any
two houses at a particular instant in time. If the relative odds
ratio between a house of interest and a "typical house" equals
two, for example, then the house of interest would be twice as
likely to sell as the "typical" house at any point in time. The
relative odds ratio will depend on characteristics of the houses
(lot size, number of baths, living area, neighborhood, etc.), their
prices, and other factors such as the season when the houses are
listed for sale. The relative importance of these determinants is
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146 KLUGER AND MILLER

clearly of interest to real estate brokers, the mortgage industry,
developers and homeowners in general.

Envision the housing market as a continuum of potential
huyers, each searching in one or more potential housing sub-
markets comprised of houses with a particular set of attributes or
characteristics. Because the number of potential buyers and
sellers (and their preferences) in each submarket can differ, the
liquidity of houses in each submarket may differ as well.
Therefore, as the attribute set changes, housing liquidity may be
affected. The proportional hazards regression model can be used
to estimate relative odds ratios for heterogeneous goods like
housing and extract from the data a rich statistical profile of the
market preferences that affect liquidity. These relative odds
estimates can in turn be used to construct a liquidity measure.

The measure proposed here is nothing more than the odds ratio
evaluated for each house at its full market price. The difficulty in
implementing this measure is the problem of defining and
assessing "full market price."

From the perspective of an appraiser full market price would
be the same as "market value," defined as "the most probable
price as of a specified date" . . . "after reasonable exposure in a
competitive market. "̂  From a statistical perspective, this might
be translated as "the price that has X percent probability of
selling by day Y." For example, this could be the price at which
a home has a 75% probability of selling within ninety days.
Clearly market value definitions are arbitrary with respect to the
choice of X and Y.

Once defined, an expert appraiser could estimate market
values and these numbers could be used to evaluate the odds
ratios. This approach may not be practical and will suffer from
appraisal error. Another approach would be to use a hedonic
pricing model to estimate market values. While easier to im-
plement, the estimates would suffer from errors from the hedonic
model (e.g., omitted variables). In any event, if one can develop a
reasonable estimate of "market value," that estimate can be used
to calculate the relative odds ratio of houses at their market
prices. This price-adjusted odds ratio can then be interpreted as
a measure of relative liquidity.

A drawback to the liquidity measure proposed here lies in the
definition of liquidity as the expected time to sale of a house
priced at its market value. Although this definition is widely
used, it is not precise without an exact definition of market

'See American Institute of Real Estate Appraisers [1 Glossary].



MEASURING REAL ESTATE LIQUIDITY 147

value. Lippman and McCall [17] define liquidity in the context of
a search model, which is more appropriate for the problem of
residential housing. They define liquidity as the expected time to
sale of an asset conditioned upon the seller following an optimal
marketing strategy. The seller will maximize the net present
value from selling by choosing the list price, a stopping rule,^
whether or not to sell using a real estate broker, and so on. These
choices, and the resulting expected time to sell the house, will
likely depend on the characteristics of the asset itself (lot size,
living area, neighborhood, etc.), the characteristics of the parti-
cular seller (opportunity cost of capital, degree of risk aversion,
disutility from showing the house to potential buyers, etc.), as
well as the pools of potential buyers and competing sellers. In
theory, if we knew enough about the structure of the market, we
could calculate a liquidity measure based on Lippman's and
McCall's notion of liquidity. Typically though, an analyst would
not have access to such data. Our measure, although based on a
less theoretically appealing definition of liquidity, can be easily
implemented.

Previously researchers have examined time on the market, a
variable closely associated with liquidity. Most studies of time on
the market have used market segmentation, multiple regression
models or probit models. In their research on pricing strategies.
Miller and Sklarz [20] indicate the sellers' strategies take into
account both price and selling time, but non-price infiuences on
time on the market are not considered. Kang and Gardner [12],
and Butler and Guntermann [5] examine the effects of other house
features on the time on the market using traditional regression
approaches. Haurin [10] models time on the market using a
failure time model based on the Weibull distribution. Each
researcher has sought to improve our understanding of factors
that affect time on the market. However, time on the market is
not quite the same as liquidity. This study will use the pro-
portional hazards regression model (an alternative failure time
model developed by Cox [6]) to construct a measure of relative
liquidity.

In this paper we will illustrate how to construct a relative
liquidity measure and study its properties. The plan of the paper
is as follows: The next section contains a description of the
proportional hazards model. Section three describes the con-
struction of the liquidity measure and provides an example based

^See, for example, Haurin [10] for a discussion of a stopping rule in a housing
market search model.
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on data for the Columbus, Ohio housing market. Section four
discusses properties of the proposed liquidity measure. The last
section details limitations of our liquidity measure and presents
concluding remarks.

THE PROPORTIONAL HAZARDS MODEL

Construction of our liquidity measure will utilize the propor-
tional hazards methodology. Cox [6] developed the proportional
hazards (PH) model for analysis of prohlems with duration data,
and since then it has been widely applied in the epidemiologic
and social sciences. Biostatisticians routinely use the model to
look at survival rates following various treatments for diseases
such as cancers, cardiovascular diseases, and others. Although
economists have studied the durations of both unemployment
spells and strikes, most business researchers have not yet added
the proportional hazard model to their repertoire of tools.''

The proportional hazards model has several advantages over
alternative methods because it is semi-parametric and because it
can accommodate censored data. Censoring refers to observ-
ations where sale time cannot be observed. There are several
reasons why we may not be able to observe sale time for a house.
For example, homes that have not sold during the data collection
peciod are censored observations because we do not know how
much longer it will take to sell them. Additionally, homes that
were withdrawn from the market would be censored observ-
ations. Ignoring censoring gives rise to biased samples and can
lead to incorrect inferences. The proportional hazards model is
applicable to censored data sets only if there is independent
censoring, i.e., as long as houses with a low probability of sale
are no more likely to be censored than houses with a high
probability of sale.

Central to the proportional hazards model is the hazard
function. Let T be a random variable representing the length of
time between the date when the house is put on the market and
the date when the house is sold, and let f{t) and F{t) be the p.d.f.

^Atkinson and Micklewright [3] have examined unemployment duration;
Lancaster [15], and Kennan [13] look at strike duration; Green and Shoven study
mortgage prepayment rates [8]. Kiefer [14] reviews the literature on statistical
methods (including the proportional hazards model) to analyze economic
duration data. Description and discussion of the PH model is included in several
texthooks including Kalbfleisch and Prentice [11], Miller [21] and Lee [16].
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and the cumulative p.d.f. of sale time, respectively. The hazard
function, h(t), can then be defined as:

hit) = f(t)l{l-F{t)). (1)

The hazard represents the conditional probability of selling a
house at time t, provided that the house has not sold until time t.
From the definition, one can clearly see that specification of
either the p.d.f. or cumulative p.d.f. completely specifies the
hazard function (and vice versa)." The hazard function, however,
is a natural way to study duration data because it entails
specification of a structural model based on conditional prob-
abilities. Therefore, we can look at the overall probability of not
selling the house by t days as a sequence of probabilities for
being unable to sell one day at a time. As Kiefer [14] states,
"Conditional and unconditional probabilities are related, so the
mathematical description of the process is the same in either
case. It is the conceptual difference that is important in the
modeling of economic duration data."'^ Here, the hazard approach
will be a convenient way to look at how sale probabilities vary
according to the length of time the house has been on the market.

The PH model is based on the assumption that the hazard
functions are proportional and that the proportionality constant
depends on the explanatory variables. Thus, if h(t,X) is the
hazard function representing the conditional probabilities of sale
for a house with explanatory variables X, then the PH model
assumes that

hit,X) = expipX)hM (2)

Beta represents PH regression coefficients and hoit) is the
baseline hazard function.** In this framework, the conditional
probabilities of sale for any two houses are proportional,
regardless of what time frame we are considering. So, by
assumption, if a house in one neighborhood has twice the
likelihood of sale in its first week on the market than does a
house in another neighborhood, then the first house is also

"The survival function, (1 — F{t)), is also often used in failure time models. In the
present context, the survival function would represent the probability of a house
not being sold by time t. The survival function can easily be calculated given the
hazard function.

Kiefer [14, p. 648].
baseline hazard represents the "shape" of the hazard function. It can be

arbitrarily set to represent the hazard for any house. The hazard function for
other houses will be proportional to this baseline hazard function.
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twice as likely to sell in its second week in the market provided
both houses have not sold during the first week. This ratio of
conditional probabilities is called the hazard ratio or relative
odds ratio. The PH assumption implies that the hazard ratios do
not vary with time allowing us to estimate the proportionality
factors without specifying the form of the baseline hazard
function. For this reason, the PH model is often called a
semi-parametric method.'

The PH model uses a likelihood approach to estimate the
vector of beta coefficients from the hazard function. The con-
ditional likelihood function is formed by first considering the
conditional probabilities of sale at each sale time in the sample.
Suppose that at time tj one home in the sample, with explanatory
variables Xj, was sold. Let R(tj) represent the set of observations
with sale or censored times greater or equal to tj. The probability
that the house with Xj sells at tj, given that we know that one
house actually sold at tj, is h(t,Xj)l{sum of all h(t,X^)}, where k
indexes all the houses in R(tj). Call this probability /7j. According
to the PH assumption in equation (2), /7j reduces to:

77j = expipX)lZ[exp(pXd]. (3)

The conditional likelihood function is then formed by multi-
plying together the conditional probabilities /7^, 11^, ^3, . . . where
the subscript represents each sale time in the sample, with the
/7's adjusted if there are ties (houses with the same sale times).
Each 77; is formed using only the observations that might have
been sold at eacb sale time, j . Houses previously sold or censored
houses would not be included in R{t^. The likelihood function is
then maximized with respect to the beta coefficients to obtain the
PH model estimates.^

Hypothesis testing can be conducted in a manner similar to the
method used in logit models. A non-zero beta coefficient indicates
that the explanatory variable affects the hazard rate. To see
whether one or more of the betas are significantly different from
zero, likelihood ratio tests are conducted.

'Other failure time models make some assumption as to the form of the haseline
hsizard function. The Exponential and Weibull models are examples of para-
metric failure rate regression models. See Kalhfleisch and Prentice [11, pp.
30-38] for a description of these models.
^Chapter 6 of Miller [21] or Chapter 5 of Kalhfleisch and Prentice [11] provide a
much more detailed discussion of how the likelihood function is formed, how
ties are handled, and how the parameters of the model are estimated. The
statistical software package, SAS, contains a procedure (PHGLM) which we use
to estimate our PH model.



MEASUEING REAL ESTATE LIQUIDITY 151

The PH model also will allow estimation of the odds ratio to
further assess the importance of explanatory variahles. The odds
ratio is the ratio of the hazard functions:

h{t,Xdlh{t,X,) = exp{pX,)h,{t)lexp{l3X,)h,{t) (4)

or:
h(t,X,)lh{t,X,) = expiPiX, - X,)), (4')

where X^ and X2 are two different values of the variable X. To
understand the interpretation of this ratio, consider the com-
parison of the hazard rates for a particular neighborhood versus
the hazard rate for all houses in the sample. X then would
represent a dummy variable equal to one {X{) for the neighbor-
hood of interest, or zero (X2) for houses in other neighborhoods.
The odds ratio, exp(/3(l-0)), or expiP), can be interpreted as the
odds of sale for houses in the neighborhood of interest relative to
all houses in other neighborhoods. Thus, if the odds ratio equaled
two, then houses located in the neighborhood in question would
be twice as likely to sell on any given day.

CONSTRUCTION OF A LIQUIDITY MEASURE

The liquidity measure is simply the odds ratio evaluated at
market prices. Thus, our measure can be interpreted as the
relative odds of sale between two residences. Notice that this is
a relative notion of liquidity. We do not look directly at the
expected time to sell a house at its market value. Instead we
measure the likelihood of sale of one house at its market value
relative to another house at its market value.

To understand how to construct and interpret this measure, we
present an example using data from the Columbus, Ohio housing
market. To do this we must first estimate a proportional hazards
model and a hedonic pricing model.

Sample Data

The sample studied consists of one hundred and three resi-
dential properties on the market in Columbus, Ohio during 1976.
Time on the market varied from one day to two hundred days.
Attributes collected included lot size, square feet of living area,
number of bedrooms, baths, and several other attributes of
quality or quantity, such as age and construction as brick or
frame. Table 1 contains means and ranges for the variables in our
sample.
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TABLE 1

Sample Data Set

97 Uncensored Observations
6 Censored Observations

Sample Range
Variables Mean Low High

Time on Market (days)
List Price
Sale Price

Living Area (sq. ft.)
Bedrooms
Bathrooms

Lot Size (sq. ft.)
Age

Dummy Variables
Upper Arlington Neighborhood

Winter
Summer
Spring

Fireplace
Swimming Pool

Brick or Stone Construction
Landscaping*

66
$63,522
$60,016

1800
3.5
2

14244
18.9

0.50
0.17
0.16
0.36
0.96
0.05
0.25
0.89

1
$28,500
$29,000

900
2
1

2800
1

200
$185,000
$175,000

4400
6
5

180000
55

*0 = Fair, 1 = Good, 2 = Excellent

Using this data set, a hedonic pricing model was developed
using standard regression techniques, with sales price as the
dependent variable.^ The beta coefficients for our hedonic pricing
model are contained in Table 2. While models with greater
overall fit were possible, they included many insignificant vari-
ables. The variables actually used were also selected to minimize
multicollinearity among the independent variables.

Table 3 contains the beta coefficients for the proportional
hazards model. These coefficients represent variables that affect
the time to sale: a negative beta means that increases in the
variable reduce the hazard rate: a positive beta signals that
increases in the variable increase the hazard rate. In our

"OLS may not be appropriate for data sets with a considerable number of
censored observations because there may be selectivity bias. In this case the
hedonic estimates ought to be estimated using a correction procedure suggested
by Hekman. See Chapter 8 of Maddala [18] for a discussion of this procedure.
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TABLE 2

Hedonic Pricing Model

Dependent Variable: Sale Price

Variable

Intercept
Bedrooms
Lot size (sq. ft.)
Age
Brick or Stone Construction
Landscaping
Upper Arlington

Sample Size 97
f-Value 31.81
Adjusted R-Square 0.656

Beta

165
13565
0.653
- 4 0 5
10535
4367
9568

St. Error

2455
0.087
125

3945
1929
3261

f-Value

5.52
7.50
3.24
2.67
2.26

2.67

Probability

<0.0I
<0.01
<0.0I
<0.01

0.03

<0.01

TABLE 3

Proportional Hazards Model

Dependent Variable: Time to Sale (days)

Variable

Summer
Spring
List Price
Bedrooms
Lot Size
Landscaping

Beta

-1 .50
-0.84

-0.000012
0.55

- 0.000048
0.23

Std. Error

0.40
0.24

0.0000063
0.20

0.000022
0.15

C/ii-Squre

13.82
12.54
3.91
7.33
4.85
2.48

Probability

<0.0I
<0.01

0.05
<0.01

0.03
0.12

Z.PH

0.55
1.32
0.32

-0.10
1.47

-0.52

97 Uncensored Observations
6 Censored Observations
-2LogL.R. 695.9
Model C/ii-Square 42.70 with 6 D.F.

example, listing the house in the spring or summer, increasing
list price, and increasing lot size signal an increased hazard
ratio, which implies a longer expected time on the market, ceteris
paribus. An extra bedroom and better landscaping imply a
shorter expected time on the market, ceteris paribus.

The last column of Table 3 (labeled Z : PH) contains a statistic
to examine the validity of the proportional hazards assumption
(see equation 2). Under the null hypothesis of proportional
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TABLE 4

Liquidity Measure: The Price-Adjusted Odds Ratio

Odds Ratio

House listed in the Spring* 0.43
House listed in the Summer* 0.22
House with an Additional Bedroom 1.47
Excellent Landscaping** 1.19
Lot with an Additional 5000 square feet 0.76

*Relative to a house listed in the fall or winter
**Relative to a house with good landscaping

hazards, the statistic will he a standard normal deviate. There-
fore a Z : PH with a magnitude of 1.91 indicates that we cannot
reject the null hypothesis of proportionality at the 5% signi-
ficance level.'"

Our liquidity measure is hased on the coefficients of hoth the
proportional hazards model and the hedonic pricing model.
Recall that the PH model odds ratio is defined as exp()3(Zi - X^),
where P represents the PH coefficients, and X., and Xj are the
characteristics of the two houses to he compared. Using the
estimated coefficients from the PH model, the relative odds ratio
for any house relative to any other house is:

ROR = exp[ - l.m*ASUMMER - 0.84* ASPRING

- 0.000012* ALIST PRICE+ 0.55* ABEDROOMS

+ 0.23*ALANDSCAPING-0.000048*zlLOT SIZE], (5)

where the A signifies the difference hetween the values of each
variahle for the houses to he compared.

To calculate our relative liquidity measure, we compute the
price-adjusted odds ratio, or the relative odds ratio for each
house at market value." The price-adjusted odds ratios in Tahle
4 were calculated using the preceding equation. For example,
consider the relative odds ratio for two houses identical except

'"See Harrell and Lee [9] for a detailed discussion of this test.
"Note that the liquidity measure can be constructed using an estimate of
market value plus an estimate of the odds ratio. The estimate of market value
could, for example, be obtained by appraisal. The estimate of the odds ratio
could be obtained from an alternative failure time model such as the Weibull
model.
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that one has an extra hedroom and is listed at a price of $13,565
more (to refiect the market value of the extra hedroom as
estimated hy the hedonic model in Tahle 2). The equation for the
ROR reduces to:

ROR = exp[ - 0.000012*(13.565) + 0.55*1] = 1.47. (5')

Therefore, we estimate that an additional hedroom will increase
the sale prohahility on any given day to 1.47 times what the sale
prohahility would have heen without the extra hedroom. This
numher can he thought of as a measure of the "liquidity" added
hy an extra hedroom.'^

Tahle 4 contains the estimates of our liquidity measure for
each explanatory variahle in our illustrative PH model. For the
data set considered here, additional hedrooms and improved
landscaping add to residential liquidity. Homes with larger lots
were found to he less liquid. We also report a strong seasonal
effect, with houses that are listed in spring or summer heing less
liquid.

THE LIQUIDITY MEASURE AND TIME ON THE MARKET

The measure of relative liquidity proposed here, the price-
adjusted relative odds ratio, is clearly related to the expected
time on the market. In the previous example, a house with an
extra hedroom had a likelihood of sale on any given day that was
1.47 times what the sale prohahility would have heen without the
extra hedroom. Hence, the expected time on the market is lower
for the house with an extra hedroom. Nevertheless, the odds ratio
alone does not provide enough information to compute the
expected time on the market. An estimate of either the survival
function or the hazard function is required to calculate the
expected sale time.

Tahle 5 contains estimates of hoth the hazard function and the
survival function for a house with median values for the
variahles in our sample. The "median" house (a house with
median values for all the independent variahles in our data set) is

bedrooms were entered as a single variable taking values from two to six
bedrooms. The estimates from the PH model therefore represent the average
effect of adding an additional bedroom. Alternatively, one could have coded the
data using separate dummy variables for a two-bedroom house, a three-bedroom
house, and so on. In this case the model would give separate estimates for the
liquidity of adding any number of bedrooms within the sample range.
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TABLES

Estimated Survival and Hazard for the Median House*

Time

0
5
10
15
20
30
40
50
60
70
80
90
IOO
110
120

Survival

1.00
0.86
0.84
0.80
0.72
0.58
0.42
0.36
0.25
0.12
0.08
0.06
0.03
0.02
0.02

Hazard

0.01
0.03
0.02
0.07
0.09
0.08
0.07
0.21
0.14
0.08
0.18
0.25
0.14
0.16

*The median house is listed in the fall or winter with: three bedrooms, good landscaping, a 9490 square

foot lot and a list price of $54,540.

arbitrarily chosen to display the shape of the baseline hazard
function. The hazard function represents the conditional prob-
ability of sale for the "median home" at any point in time, and
the survival function represents the probability that a house will
have not yet sold at any point in time. These estimates plus the
PH beta coefficients allow us to calculate the survival function
and the hazard function for any house of interest. Each hazard
function will, by assumption, be proportional to the hazard
function shown in Table 5. Equation (4') therefore simimarizes
the relationship between the hazard for the "median house" and
the hazard function for any other house. This relationship
implies that the survival functions are not proportional, but
rather related according toî ^

S(<,Z,) = S«,Z2)-p!« '̂-̂ ^>' (6)

The survival function for each house can be used to roughly
estimate the expected sale time. Ths calculation can be carried
out using simple nimierical differentiation and integration pro-
cedures on a personal computer. The expected time to sale for the

Miller [21, pp. 2-3] for the derivation of equation 6.
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TABLE 6

Expected Sale Times (at the Listing Date)

Median House*

Median House except:
Listed in Spring
Listed in Summer
Extra Bedroom and List Price of $68,105
Improved Landscaping and List Price of $58,907
Extra 5000 Sq. Ft. of Lot and List Price of $57,805

Days
39

63
70
30
34
46

*The median house is listed in the fall or winter with: three bedrooms, good landscaping, a 9490 square
foot lot and a list price of $54,540.

median home and for the median home with ceteris parihus
changes to the variahles in our data set are shown in Table 6."

For example, adding an extra hedroom to the median home
(and increasing the cost of the home hy $13,565 to refiect the
increase in market value) reduces the expected sale time hy nine
days. Note that these calculations do not imply that adding an
extra hedroom to a house other than the median will reduce
expected sale time hy a week. From the relative odds ratio, it is
clear that expected sale time will he lower, hut it may he lowered
hy more or less than a week depending on the other attrihutes of
the houses.

CONCLUSION

The liquidity measure proposed in this paper is easy to
calculate and interpret. It is potentially useful to study the
magnitudes of factors that affect liquidity. It is also tempting to
use the proportional hazard estimates to examine the effects of
alternative pricing strategies on the time on the market. How-
ever, one must he careful when evaluating pricing effects. It does
not make sense to apply the proportional hazards estimates to a
house with an asking price far away from its market value as this
would he applying estimates from the model heyond the sample
range. For example, using our sample data set, a house priced

'•'These numbers are only ballpark estimates. Errors from estimating both the
beta coefficients and the baseline survival function are compounded with errors
from the numerical procedures due to the relatively small size of our data set.
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$1000 less than its market price has an odds ratio of 0.98, a
plausible estimate. A house priced $50,000 below market value,
however, has an odds ratio of 0.55. This ratio is clearly too high,
considering that the houses in this sample sell, on average, for
$60,000.

Future research to determine the liquidity of various tj^jes of
real estate in both active and thin markets will help expand our
understanding of the liquidity premium in real estate markets.

We would like to thank Don Haurin, Pat Hendershott and two
anonymous referees for helpful suggestions and comments.
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